138 research outputs found

    Non-universal Critical Quantities from Variational Perturbation Theory and Their Application to the BEC Temperature Shift

    Full text link
    For an O(N) symmetric scalar field theory with Euclidean action integral d^3x [1/2 |nabla phi|^2 + 1/2 r phi^2 + 1/4! u phi^4], where phi = (phi_1,...,phi_N) is a vector of N real field components, variational perturbation theory through seven loops is employed for N = 0,1,2,3,4 to compute the renormalized value of r/(N+2)u^2 at the phase transition. Its exact large-N limit is determined as well. We also extend an earlier computation of the interaction-induced shift Delta/Nu for N = 1,2,4 to N = 0,3. For N = 2, the results for the two quantities are used to compute the second-order shift of the condensation temperature of a dilute Bose gas, both in the homogenous case and for the wide limit of a harmonic trap. Our results are in agreement with earlier Monte Carlo simulations for N = 1,2,4. The appendix contains previously unpublished numerical seven-loop data provided to us by B.Nickel.Comment: 19 page

    Simplified Transfer Matrix Approach in the Two-Dimensional Ising Model with Various Boundary Conditions

    Full text link
    A recent simplified transfer matrix solution of the two-dimensional Ising model on a square lattice with periodic boundary conditions is generalized to periodic-antiperiodic, antiperiodic-periodic and antiperiodic-antiperiodic boundary conditions. It is suggested to employ linear combinations of the resulting partition functions to investigate finite-size scaling. An exact relation of such a combination to the partition function corresponding to Brascamp-Kunz boundary conditions is found.Comment: Phys.Rev.E, to be publishe

    Recursive Graphical Construction of Feynman Diagrams in phi^4 Theory: Asymmetric Case and Effective Energy

    Get PDF
    The free energy of a multi-component scalar field theory is considered as a functional W[G,J] of the free correlation function G and an external current J. It obeys non-linear functional differential equations which are turned into recursion relations for the connected Greens functions in a loop expansion. These relations amount to a simple proof that W[G,J] generates only connected graphs and can be used to find all such graphs with their combinatoric weights. A Legendre transformation with respect to the external current converts the functional differential equations for the free energy into those for the effective energy Gamma[G,Phi], which is considered as a functional of the free correlation function G and the field expectation Phi. These equations are turned into recursion relations for the one-particle irreducible Greens functions. These relations amount to a simple proof that Gamma[G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of classes of graphs. Examples are given for resumming one-loop and multi-loop tadpoles, both through all orders of perturbation theory. Since the functional differential equations derived are non-perturbative, they constitute also a convenient starting point for other expansions than those in numbers of loops or powers of coupling constants. We work with general interactions through four powers in the field.Comment: 34 pages; abstract expanded; section IV.E about absorption of tadpoles and one related reference added; eqs. (20) and (23) corrected; further references added; some minor beautifications; to be published by Phys.Rev.

    Five-Loop Vacuum Energy Beta Function in phi^4 Theory with O(N)-Symmetric and Cubic Interactions

    Full text link
    The beta function of the vacuum energy density is analytically computed at the five-loop level in O(N)-symmetric phi^4 theory, using dimensional regularization in conjunction with the MSbar scheme. The result for the case of a cubic anisotropy is also given. It is pointed out how to also obtain the beta function of the coupling and the gamma function of the mass from vacuum graphs. This method may be easier than traditional approaches.Comment: 16 pages, LaTeX; "note added" fixe

    Two-Loop Effective Potential of O(N)-Symmetric Scalar QED in 4-epsilon Dimensions

    Full text link
    The effective potential of scalar QED is computed analytically up to two loops in the Landau gauge. The result is given in 4-epsilon dimensions using minimal subtraction and epsilon-expansions. In three dimensions, our calculation is intended to help throw light on unsolved problems of the superconducting phase transition, where critical exponents and the position of the tricritical point have not yet found a satisfactory explanation within the renormalization group approach.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/32

    Renormalization Group Summation and the Free Energy of Hot QCD

    Get PDF
    Using an approach developed in the context of zero-temperature QCD to systematically sum higher order effects whose form is fixed by the renormalization group equation, we sum to all orders the leading log (LL) and next-to-leading log (NLL) contributions to the thermodynamic free energy in hot QCD. While the result varies considerably less with changes in the renormalization scale than does the purely perturbative result, a novel ambiguity arises which reflects the strong scheme dependence of thermal perturbation theory.Comment: 7 pages REVTEX4, 2 figures; v2: typos correcte

    Optimal trap shape for a Bose gas with attractive interactions

    Full text link
    Dilute Bose gas with attractive interactions is considered at zero temperature, when practically all atoms are in Bose-Einstein condensate. The problem is addressed aiming at answering the question: What is the optimal trap shape allowing for the condensation of the maximal number of atoms with negative scattering lengths? Simple and accurate analytical formulas are derived allowing for an easy analysis of the optimal trap shapes. These analytical formulas are the main result of the paper.Comment: Latex file, 21 page

    Sphalerons with CP-Violating Higgs Potentials

    Full text link
    We investigate the effect on the sphaleron in the two Higgs doublet electroweak theory of including CP violation in the Higgs potential. To have better control over the relation between the sphaleron energy and the physical quantities in the theory, we show how to parametrize the Higgs potential in terms of physical masses and mixing angles, one of which causes CP violation. By altering this CP violating angle (and keeping the other physical quantities fixed) the sphaleron energy increases by up to 10%. We also calculate the static minimum energy path between adjacent vacua as a function of Chern-Simons number, using the method of gradient flow. The only effect CP violation has on the barrier is the change in height. As a by-product of our work on parametrization of the potential, we demonstrate that CP violation in the Higgs sector favours nearly degenerate light Higgs masses.Comment: 13pp LaTeX2e, 2 eps figs, uses graphicx, a

    Mass Expansions of Screened Perturbation Theory

    Get PDF
    The thermodynamics of massless phi^4-theory is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We analytically calculate the pressure and entropy to three-loop order and the screening mass to two-loop order, expanding in powers of m/T. The truncated m/T-expansion results are compared with numerical SPT results for the pressure, entropy and screening mass which are accurate to all orders in m/T. It is shown that the m/T-expansion converges quickly and provides an accurate description of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
    • …
    corecore